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Abstract

In this work, we introduce a system for real-time ge-
neration of drum sounds. This system is composed of
two parts: a generative model for drum sounds together
with a Max4Live plugin providing intuitive controls on
the generative process. The generative model consists
of a Conditional Wasserstein autoencoder (CWAE),
which learns to generate Mel-scaled magnitude spec-
trograms of short percussion samples, coupled with a
Multi-Head Convolutional Neural Network (MCNN)
which estimates the corresponding audio signal from
the magnitude spectrogram. The design of this model
makes it lightweight, so that it allows one to perform
real-time generation of novel drum sounds on an aver-
age CPU, removing the need for the users to possess
dedicated hardware in order to use this system. We
then present our Max4Live interface designed to inter-
act with this generative model. With this setup, the sys-
tem can be easily integrated into a studio-production en-
vironment and enhance the creative process. Finally, we
discuss the advantages of our system and how the inter-
action of music producers with such tools could change
the way drum tracks are composed.

Introduction
In the early ’80s, the widespread use of the sampler revolu-
tionized the way music is produced: besides hiring profes-
sional musicians, music producers have since been able to
compose with sampled sounds. This has brought much flex-
ibility for both drum and melody production, thanks to the
various offline edition possibilities offered by such systems
like pitch shifting, time stretching, looping and others.

Nowadays, many producers still rely on samplers for
drums production, mainly due to the always-increasing
amount of samples libraries available for download. This
has helped music production become increasingly accessi-
ble, even to newcomers with no or little notion in sound
design. However, relying on samples has also some draw-
backs. Indeed, producers now have to browse their vast col-
lection of samples in order to find the ”right sound”. This
process is often inefficient and time-consuming. Kick drum
datasets are usually unorganized with, for instance, samples
gathered in a single folder, regardless of whether they sound
”bright” or ”dark”. As a result, many producers would rely

only on a limited selection of their favourite sounds, which
could hamper creativity.

Hence, a method allowing a comfortable and rich explo-
ration of sounds becomes an essential requirement in music
production, especially for non-expert users. Numerous re-
search efforts have been done in the domain of user experi-
ence in order to provide interfaces that enhance the fluidity
of human-machine interactions. As an example, synthesiz-
ers interfaces now often feature ”macro” controls that allow
to tune a sound to one’s will quickly.

Another approach to tackle this problem is the use of
Music Information Retrieval (MIR) to deal more efficiently
with vast libraries of audio samples. MIR is an approach
based on feature extraction: by computing a lot of audio
features (Peeters 2004) over a dataset, one can define a per-
ceptual similarity measure between sounds. Indeed, audio
features are related to perceptual characteristics, and a dis-
tance between a combination of features is more relevant
than a squared error between two waveforms. The combina-
tion of MIR with machine learning techniques appears nat-
ural in order to organize such audio libraries by allowing,
for example, clustering or classification based on audio con-
tent. We can cite software such as AudioHelper’s Samplism,
Sononym and Algonaut’s Atlas.

While such software only allows one to organize an ex-
isting database, we propose to use artificial intelligence to
intuitively generate sounds, thus also tackling the problem
of sound exploration. Only very recently, some machine
learning models have been developed specifically for the
problem of audio generation. These generative models per-
form what we could define as synthesis by learning. They
rely on generative modelling, which allows performing au-
dio synthesis by learning while tackling the question of in-
tuitive parameter control (Esling, Bitton, and others 2018;
Engel et al. 2017).

Generative models are a flourishing class of machine
learning approaches whose purpose is to generate novel data
based on the observation of existing examples (Bishop and
Mitchell 2014). The learning process consists of modelling
the underlying (and unknown) probability distribution of the
data based on samples.

Once the model is trained, it is then possible for a user to
generate new samples at will. However, for the user to be
active during the synthesis process and not only passively
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Figure 1: This diagram presents our end-to-end system for drum sounds synthesis. The generative model (1) learns how
to reconstruct spectrograms from a parameters’ space. Then, the second part of the system (2) is dedicated to spectrogram
inversion, to generate some signal from a Mel spectrogram. Finally, the software interface (3) allows a user to interact with the
model and to generate sound from the parameters’ space.

browsing the outputs of the system, we find crucial the re-
quirement that the system should provide intuitive controls.
To this end, we need a model that extracts a compact high-
level representation of the data. Then, by providing these
simple high-level controls to a user, the synthesis process
can be guided by perceptual characteristics. A user would
just have to explore a continuous and well-organized param-
eter space to synthesize an infinite variety of sounds.

Our proposal
In this work, we describe a system that allows to create a
controllable audio synthesis space so that we can use it to
synthesize novel sounds in an intuitive manner. This system
can be split into three components (Fig. 1):

• A Conditional Wasserstein Auto-Encoder (CWAE) which
generates Mel-scaled spectrograms.

• An extension of the Multi-Head Convolutional Neural
Network (MCNN) which reconstructs signal from Mel-
scaled spectrograms.

• A Max4Live plugin allowing users to interact with the
model in a music production environment.

In the remainder of this document, we first provide a state
of the art on Wasserstein auto-encoders and MCNN. Then
we describe our model and the data we used to train it. We
discuss reconstruction and generation results. Finally, we
showcase the associated plugin and explain how it could
change the way drum tracks are produced.

Related work
Generative models on audio waveforms
A few systems based on generative models have been re-
cently proposed to address the learning of latent spaces for
audio data. The Wavenet auto-encoder (Engel et al. 2017)
combines Wavenet (Oord et al. 2016) with auto-encoders
and uses dilated convolutions to learn waveforms of mu-
sical instruments. By conditioning the generation on the
pitch, such a system is capable of synthesizing musical notes
with various timbres. The WaveGAN (Donahue, McAuley,

and Puckette 2018) uses Generative Adversarial Networks
(GANs) to generate drum sounds or bird vocalizations by di-
rectly learning on waveform. However, the GAN approach
provides little control over the generation because it is still
difficult to structure their latent space.

Generative models on spectral representations
Other works have focused on generating sound as spectro-
grams, a complex time-frequency representation of sound.
This visual representation of sound intensity through time
allows us to treat sounds like images, but has to reverted
back to the signal domain to produce sound. In (Esling,
Bitton, and others 2018) uses VAEs to learn a generative
space where instrumental sounds are organized with respect
to their timbre. However, because the model is trained on
spectra frames, it lacks temporal modeling. This hampers
the capacity of the model to easily allow users to gener-
ate evolving structured temporal sequences such as drum
sounds. This approach introduced in (Donahue, McAuley,
and Puckette 2018) takes into account these temporal depen-
dencies by proposing SpecGAN, a generative models which
uses GANs to generate spectrograms as if they were images.

Spectrogram inversion
Working with neural networks often forces us to discard the
phase information of a spectrogram. Therefore, one can-
not use the inverse Fourier transform to retrieve the signal it
originates from. With classic STFT, a common workaround
is to use the Griffin-Lim Algorithm (GLA) (Griffin and Lim
1984) which allows to estimate the missing phase informa-
tion. Also, The Multi-head Convolutional Neural Network
(MCNN) is a model that inverts STFTs (Arık, Jun, and Di-
amos 2019) using neural networks.

However, STFT is not the best transform for our purpose.
Indeed, Mel-scaled spectrograms are known to be more suit-
able for training convolutional neural networks (Huzaifah
2017). Mel-scaled spectrograms are computed with filters
based on the Mel scale, a perceptual frequency scale that
tries to mimic the human perception of pitches.



Despite being more adapted for training, using Mel-scaled
spectrograms introduces a problem: they are not invertible
and GLA cannot be used. Therefore, some deep learning
based models have been developed in order to estimate sig-
nal from non-invertible spectrograms. In (Prenger, Valle,
and Catanzaro 2018), the authors present WaveGlow, a flow-
based network capable of generating high quality speech
from Mel spectrograms. Also, in (Huang et al. 2018), the
authors use a conditioned Wavenet to estimate signal from
Constant-Q Transforms, another non-invertible transform.

Proposed model
Our model is composed of two components: a generative
model on spectrograms, whose role is to learn a latent space
from our dataset and to generate meaningful spectrograms
from this space, and a spectrogram inversion model, whose
role is reconstruct waveforms from our generated spectro-
grams.

Preliminaries on variational autoencoders
To formalize our problem, we rely on a set of data
{xn}n∈[1,N ] lying in a high-dimensional space xi ∈ Rdx .
We assume that these examples follow an underlying proba-
bility distribution p (x) that is unknown. Our goal is to train
a generative model able to sample from this distribution.

We consider a parametrized latent variable model

pθ(x, z) = pθ(x|z)π(z).

by introducing latent variables z ∈ Rdz lying in a space of
smaller dimensionality than x (dz � dx) and distributed ac-
cording to the prior π(z). We are interested in finding the
parameter θ that maximizes the likelihood

∑
i pθ(xi) of the

dataset. However, for usual choices of the conditional prob-
ability distributions pθ(x|z) (typically a deep neural net-
work), this quantity is intractable.

The variational autoencoder (VAE) (Kingma and Welling
2013) is a model that introduces a variational approxima-
tion qφ(z|x) to the intractable posterior pθ(x|z) (the approx-
imate posterior qφ(z|x) is often chosen as a parametrized
family of diagonal Gaussian distributions). The network
qφ(z|x) is called the encoder whose aim is to produce latent
codes given xwhile the network pθ(x|z) is called a decoder,
which tries to reconstruct x given a latent code z.

The introduction of the variational approximation of the
posterior allows us to obtain the following lower bound
L(θ, φ) (called ELBO for Evidence Lower BOund) over the
intractable likelihood:

L(θ, φ) = Ex∼p(x)
[
Ez∼p(z|x)

[
log pθ(x|z)

]︸ ︷︷ ︸
reconstruction

−DKL

[
qφ(z|x) ‖ π(z)

]︸ ︷︷ ︸
regularization

]
, (1)

whereDKL denotes the Kullback-Leibler divergence (Cover
and Thomas 2012).

• The first term Ez∼p(z|x)
[
log pθ(x|z)

]
is the likelihood

of the data x generated from the set of latent variable
z ∼ qφ(z|x) coming from the approximate posterior.
Maximizing this quantity can be seen as minimizing a re-
construction error.

• The second term DKL

[
qφ(z|x) ‖ π(z)

]
is the distance

between qφ(z|x) and π(z) and can be interpreted as a reg-
ularization term.
In (Sohn, Lee, and Yan 2015), the authors add a condi-

tioning mechanism to the original VAE which consists in
conditioning all three networks pθ(x|z), qφ(z|x) and π(z)
on some metadata m (in most cases, the prior π(z) does not
depend on m).

However, a known problem of VAEs is that they tend
to generate blurry samples and reconstructions (Chen et al.
2016). This becomes a major hindrance in the context of
spectrogram reconstructions. Hopefully, this problem can be
overcome by the use of Wasserstein Auto-Encoders (WAEs)
instead of VAEs. The main difference consists in replacing
theDKL term in (1) by another divergence between the prior
π and the aggregated posterior qZ(z) := Ex∼pX [q(z|x)].
In particular, the MMD-WAE considers a Maximum Mean
Discrepancy (MMD) (Berlinet and Thomas-Agnan 2011)
distance defined as follows:

MMD2
k(p, q) =

∥∥∫
Z

k(z, ·)p(z)dz −
∫
Z

k(z, ·)q(z)dz
∥∥2
Hk
,

(2)
where k : Z × Z → R is an positive-definite reproducing
kernel and Hk the associated Reproducing Kernel Hilbert
Space (RKHS) (Berlinet and Thomas-Agnan 2011). MMD
is known to perform well when matching high-dimensional
standard normal distributions (Tolstikhin et al. 2017; Gret-
ton et al. 2012). Since the MMD distance is not available in
closed form, we use the following unbiased U-statistic esti-
mator (Gretton et al. 2012) for a batch size n and a kernel
k:

MMD2
k,n(π, qz) :=

1

n(n− 1)

∑
l 6=j

k(zl, zj)

+
1

n(n− 1)

∑
l 6=j

k(z̃l, z̃j)−
2

n2

∑
l,j

k(zl, z̃j), (3)

with z̃ := {z̃1, . . . , z̃n}where z̃i ∼ π and z := {z1, . . . , zn}
where zi ∼ qz .

The Conditional WAE
We now introduce a Conditional WAE (CWAE) architecture
so that we can generate spectrograms depending on addi-
tional metadata such as the category of the original sound
(e.g. kick drum, snare, clap, etc.).

Our encoder is defined as a Convolutional Neural Net-
work (CNN) with l layers of processing. Each layer is a 2-
dimensional convolution followed by conditional batch nor-
malization (Perez et al. 2017; Perez et al. 2018) and a ReLU
activation. This CNN block is followed by Fully-Connected
(FC) layers, in order to map the convolution layers activa-
tion to a vector of size dz which is that of the latent space.



The decoder network is defined as a mirror to the encoder,
so that they have a similar capacity. Therefore, we move
the FC block before the convolutional one and change the
convolution to a convolution-transpose operation. Also, we
slightly adjust the convolution parameters so that the output
size matches that of the input.

Our convolutional blocks are made of 3 layers each, with a
kernel size of (11,5), a stride of (3,2) and a padding of (5,2).
Our FC blocks are made of 3 layers with sizes 1024, 512 and
dz = 64. Therefore, our latent space is of size dz = 64.

In the case of WAEs, the MMD is computed be-
tween the prior π and the aggregated posterior qZ(z) :=
Ex∼pX [q(z|x)]. As a result, the latent spaces obtained with
WAEs are often really Gaussian which makes them easy to
sample. Here, the conditioning mechanism implies that we
use separated gaussian priors πc = N (0, 1) for each class
c, in order to be able to sample all classes as Gaussian. In-
deed, computing a MMD loss over all classes would force
the global aggregated posterior to match the gaussian prior,
and thus restrict the freedom for latent positions. Therefore,
we have to compute the per-class MMD to backpropagate
on.

Let’s formalize this problem by decomposing our dataset
D into C subsets Dc with 1 ≤ c ≤ C, containing
all elements from a single class. We define qcz(z) :=
Ex∈Dc

[q(z|x,m = c)]. Thus, our regularizer is computed
as follows :

DZ(πc, qz) =
1

C

C∑
c=1

MMD2
k,n(π, q

c
z). (4)

Finally, our loss function is computed as:

L(θ, φ) =
n∑
i=1

MSE(xi, x̂i) + βDZ(π, qz), (5)

where β = 10 and k is the multi-quadratics kernel as for
CelebA in (Tolstikhin et al. 2017).

MCNN inversion
To invert our Mel-spectrograms back to the signal domain,
we use a modified version of the original MCNN. In this
section, we first review the original MCNN before detail-
ing how we adapted it to handle Mel-spectrograms of drum
samples.

MCNN is composed of multiple heads that process STFTs
(Fig. 2). These heads are composed of L processing lay-
ers combining 1D transposed convolutions and Exponential
Linear Units (ELUs). The convolution layers are defined by
a set of parameters (f, s, c), respectively the filter width, the
stride and the number of output channels. We multiply the
output of every head with a trainable scalar wi to weight
these outputs, and we compute the final waveform as their
sum. Lastly, we scale the waveform with a non-linearity
(scaled softsign). The model is trained to estimate a wave-
form which spectrogram matches the original one. For more
implementation details, we refer the interested readers to the
original article.

We have chosen to use this model because of three main
points. First, it performs a fast (300x real-time) and precise
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Figure 2: The MCNN for spectrogram inversion. Its multi-
ple heads estimate waveforms that are summed to produce
the final waveform. Finally, the loss is computed between
the resulting spectrogram and the original one

estimation of a signal given a spectrogram. Then, it can deal
with non-invertible transforms that derive from STFT such
as Mel-STFT. Finally, its feed-forward architecture allows to
takes advantage of GPUs, unlike iterative or auto-regressive
models.

In our implementation, we kept most of the parameters
suggested in (Arık, Jun, and Diamos 2019).We use a MCNN
with 8 heads of L = 8 layers each where, for each layer li,
1 ≤ i ≤ L, we have (wi, si) = (13, 2). However, be-
cause we have padded our signals with zeros to standardize
their length, two problems appear. First, we observed that
the part of the spectrogram corresponding to the padding
(made of zeros) was not well reconstructed if convolution
feature biases. Without biases, zeros stay zeros throughout
the kernel multiplications. Therefore, we removed all biases.
Then, we observed a leakage phenomenon: because the con-
volution filters are quite large (length 13), the reconstructed
waveform had more non-zero values than the original one.
Therefore, the loss is lower-bounded by this effect. To tackle
this problem, we decided to apply a mask to the final output
of our model, aiming at correcting this leakage. Thus, for
the number of output channels for layer i, we have :

ci =

{
2L−i if 2 ≤ i ≤ L
2 if i = 1.

The output of head h is a couple of 2 vectors (sh,mh). We
estimate the mask M̂ as follows:

M̂ = σ

(
8∑

h=1

mh

)
. (6)

The finally output waveform ŝ is computed as :

ŝ∗ =

8∑
h=1

wh ∗ sh, (7)

ŝ = ŝ∗ × M̂. (8)



To train the mask, we use supervised training and intro-
duce a loss term between the original mask M and the esti-
mated one M̂ , that we name mask loss:

Lmask(M, M̂) = BCE(M,M̂). (9)

At generation time the mask is binarized. This solution has
worked very well to cut the tail artifacts introduced by the
convolutions.

A second change is that we now train MCNN on Mel-
scaled spectrograms rather than STFT. However, original
losses were computed on STFT. To turn a STFT into a Mel-
scaled spectrogram, we compute a filterbank matrix F to
combine the 2048 FFT bins into 512 Mel-frequency bins.
Finally, we multiply this matrix with the STFT to retrieve a
Mel-scaled spectrogram:

Mel = STFT× F. (10)

Therefore, we can simply convert all STFTs to Mel-scaled
spectrograms before the loss computation. This does not af-
fect the training procedure: back-propagation remains pos-
sible since this conversion operation is differentiable.

In addition, we have modified the loss function. When
training the original model on our data, we noticed some ar-
tifacts that we identified as ’checkerboard artifacts’. These
are known to appear when using transposed convolutions
(Odena, Dumoulin, and Olah 2016). We have tried known
workarounds such as NN-Resize Convolutions (Aitken et al.
2017) but it did not yield better results. We empirically real-
ized that, in our particular case, removing the phase-related
loss terms helped reducing these artifacts. Therefore, we
removed from (Arık, Jun, and Diamos 2019) the instan-
taneous frequency loss and the weighted phase loss terms
while keeping the Spectral Convergence (SC) term:

SC(s, ŝ) =
‖|MEL(s)| − |MEL(ŝ)|‖F

‖|MEL(s)|‖F
, (11)

where ‖ · ‖F is the Frobenius norm over time and frequency,
and the Log-scale MEL-magnitude loss (SClog):

SClog(s, ŝ) =
‖ log(|MEL(s)|+ ε)− log(|MEL(ŝ)|+ ε)‖1

log(|MEL(s)|+ ε)‖1
,

(12)
where ‖ · ‖1 is the L1 norm and ε is a small number.

Finally, our global loss term is:

L = αSC(s, ŝ) + βSClog(s, ŝ) + γLmask(M, M̂), (13)

where α, β and γ are constants used for weighting loss
terms. In our experiments, we set (α, β, γ) = (3, 10, 1),
which works well in practice.

Experiments
Dataset
We built a dataset of drums samples coming from various
sample packs that we have bought (Vengeance sample packs
and others). Overall, we collected more than 40,000 samples
across 11 drum categories. All sounds are WAV audio files
PCM-coded in 16 bits and sampled at 22050 Hz. Sounds that

were longer than 1 second were removed in order to obtain
a homogeneous set of audio samples.

After this preprocessing, the final dataset contains 11 bal-
anced categories (kicks, claps, snares, open and closed hi-
hats, tambourines, congas, bongos, shakers, snaps and toms)
with 3000 sounds each for a total of 33000 sounds. All
sounds in the dataset have a length between 0.1 and 1 sec-
ond (mean of 0.46 second). In order to validate our models,
we perform a class-balanced split between 80% training and
20% validation sets. All the results we present are computed
on this validation set to ensure generalization.

As said in previous sections, we compute the Mel-scaled
spectrograms of these sounds. To do so, we first pad all
waveforms with zeros to ensure a constant size among the
whole dataset. Thus, all audio files are 22015 samples long.
We also normalize them so that the maximum absolute value
of samples is 1. Then, we compute STFTs for all sounds
with a Hann window with a length of 1024, a hop size of 256
and an FFT size of 2048. To turn the STFTs into Mel-scaled
spectrograms, we multiply the STFTs with the filter-bank
matrix we mentioned earlier (Eq. 10).

Experimental setup
Before assembling the two parts of our model to create an
end-to-end system, we pre-train each network separately.

We train our CWAE with an ADAM optimizer (Kingma
and Ba 2014). The initial learning rate is set to η = 1e−3 and
is annealed whenever the validation loss has not decreased
for a fixed number of epochs. The annealing factor is set
to 0.5 and we wait for 10 epochs. The WAE is trained for
110k iterations. To obtain a good estimation of the MMD
between each qcZ and their Gaussian prior, we have to com-
pute enough z. Indeed, it is said in (Reddi et al. 2015) that
n in equation 3 should be the same order of magnitude as
dz = 64. Therefore, at each iteration, we have to ensure
that this criterion is satisfied for each class. We then im-
plemented a balanced sampler, for our data loader to yield
balanced batches containing 64 samples for each class. It
ensures more stability than a standard random batch sam-
pler. In the end, our final batch size equals 64× 11 = 704.

When training the CWAE, we perform some data process-
ing steps that allow greater stability and performance. First,
we compute the log of our spectrograms to reduce the con-
trast between high and low amplitudes. Then, we compute
the per-element means and variances to scale the log-Mel
spectrograms so that each element is distributed as a zero-
mean unit-variance Gaussian. Indeed, we have noticed that
it improves the WAE reconstruction quality.

When training the MCNN, we use the Mel spectrograms
without scaling. The initial learning rate is set to η = 1e−4

and is annealed by a scheduler at a rate of 0.2 with a pa-
tience of 50 epochs. The MCNN is trained for around 50k
iterations, with a batch size of 128.

Reconstruction
We first evaluate the reconstruction abilities of each part of
our system, and the system as a whole. On figure 3, we com-
pare the original spectrogram with both our CWAE’s recon-
struction and the spectrogram computed on the final output.



(a) Clap (b) Kick drum

Figure 3: Spectrogram reconstructions of sounds from the evaluation set. From left to right, we have: the original spectrogram,
the CWAE reconstruction and the one obtained from the reconstructed waveform (the amplitudes are presented in log-scale for
the sake of visibility

(a) Clap (b) Kick drum

Figure 4: Waveform reconstruction of sounds from the eval-
uation set. The top row shows the original waveform and
the bottom shows the reconstruction after passing the spec-
trogram throughout the whole system

In both cases, the reconstruction performed by the CWAE is
good yet a bit blurry. After passing through the MCNN, we
can see some stripes, corresponding to some checkerboard
artifact, which periodically affects the waveform. Thus, this
appears as a harmonic artifact on the spectrogram. While ap-
pearing important on these spectrograms because of the log,
the sound is often clean, as shown on the kick reconstruction
on figure 4.

More examples are available on the companion website1,
along with audio.

Sampling the latent space
On figure 6, we show generated sounds. We generate them
by first sampling a multivariate Gaussian in the latent space.
Then, we decode this latent code, conditioned on a given
class label and obtain a spectrogram. Finally, this spec-
trogram is passed to the MCNN which estimates the cor-
responding waveform. Here, both these sounds are pretty
realistic and artifact free. However, sampling the latent
space in this fashion does not always yield good sounding

1https://anonymous9123.github.io/iccc-ndm

results. This is because our latent distributions do not really
match Gaussian distributions. Also, conditioning on a cate-
gory does not ensure to generate sounds from this category
only. Indeed, some regions of the space will sound close to
a hi-hat, even if the class label for claps, is provided to the
CWAE. While this can be seen as a drawback, we think that
this does not lower the interest because it allows synthesiz-
ing hybrid sounds. You can hear additional audio examples
on the companion website.

Creative Applications
Interface
For our model to be used in a studio production context,
we have developed a user interface. This interface is a
Max4Live patch which allows a direct integration into Able-
ton Live. In this section, we describe how it works and show
some screen-shots.

To recall, we pass a (latent code, category) couple (z, c)
to the decoder of our CWAE to produce a spectrogram x̂.
Then the MCNN generates a .wav file from this spectro-
gram. However, the latent code z is high dimensional (64
dimensions), so choosing a value for each parameter would
be a long and complex process. To facilitate interactivity,
we decided to use a Principal Components Analysis (PCA)
which aim is to find the 3 most influential dimensions, thus
reducing the complexity of the fine tuning process while en-
suring a good diversity in sounds. From now on, we denote
the PCA dimensions P1, P2 and P3.

To generate sound through the interface, we provide con-
trollers: First, we provide control over the values for z: an
XY pad allows to control P1 and P2 and the ’Fine’ knob
provides control over P3. Also, a selector allows the user to
define the range of both the pad and the knob. Then, a menu
allows the user to set a value for c which comes down to se-
lecting the type of sounds one wants to generate. Finally, the
user can use the waveform visualizer to crop out remaining
artifacts for example.



Figure 5: The Neural Drum Machine interface. First, the XY pad on the left controls values for the two most influential
dimensions. The ”Fine” knob controls the value for the third most influential dimension and can be seen as fine tuning. The
range selector controls the range of values available for these three dimensions. Then, a selector allows the user to control
which type of sound is generated. Finally, the waveform visualizer on the right allows to trim a sample to play only a particular
region.

(a) Bongo (b) Hi-hat

Figure 6: Sounds generated by sampling the latent space.
From top to bottom, we have the final waveform, the spec-
trogram generated by the CWAE and the one corresponding
to the waveform (the amplitudes are presented in log-scale
for the sake of visibility).

Generation Process

Every time a parameter value changes, a new sound is gen-
erated as follows. A python server is listening on a UDP
port. This server contains the model and will be in charge
of all the computation. When the user modifies the value of
a dimension, the Max client sends a message via UDP. This

message contains the values for P1, P2, P3, and the cate-
gory of the sound. When the server receives the message,
it creates the associated latent code z by computing the in-
verse PCA of (P1, P2, P3) and concatenate it with the con-
ditioning vector. Then the server passes (z, c) to the CWAE
decoder which feeds a spectrogram to the MCNN. The ob-
tained waveform is then exported to a WAV file, and its loca-
tion is returned to the Max plugin. Finally, our plugin loads
its buffer with the content of this file and displays it on the
visualizer.

Our system can generate sounds with very low latency on
CPU (<50ms delay between the change and the sound with
a 2,6 GHz Intel Core i7). Once the sound is in the buffer, it
can be played without any latency. A demonstration video
is available on the companion website.

Impact on creativity and music production
We think that this system is a first approach towards a new
way to design and compose drums. Indeed, it is a straightfor-
ward and efficient tool for everyone to organize and browse
their sample library and design their drum sounds. Despite
the parameters being autonomously learnt by the neural net-
work, it is pretty intuitive to navigate in the latent space.

Also, such a tool can be used to humanize programmed
drums. It is often claimed that programmed electronic drums
lack a human feeling. Indeed, when a real drummer plays,
subtle variations give the rhythm a natural groove whereas
programmed MIDI drum sequences can sound robotic and
repetitive, leaving listeners bored. There are common tech-
niques to humanize MIDI drums such as varying velocities.
By allowing the synthesis parameters to vary in a small given
range, our system can be used to slightly modify the sound
of a drum element throughout a loop. This could, for exam-
ple, mimic a drummer who hits a snare at slightly different
positions.

Conclusion and Future Work
We propose a first end-to-end system that allows intuitive
drum sounds synthesis. The latent space learnt on the data
provides intuitive controls over the sound. Our system is
capable of real-time sound generation on CPU while ensur-
ing a satisfying audio quality. Moreover, the interface we



have developed is studio-ready and allows users to easily
integrate it into one of the most used DAWs for electronic
music. We identify two axes for improvement: The first one
is about the conditioning mechanism that should be more
precise and powerful so that each category can clearly be
distinguished from the others. The other axis is about de-
veloping novel ways to interact with a large latent space to
explore its full diversity. Also, similarly to what is achieved
on symbolic music (Engel, Hoffman, and Roberts 2017;
Hadjeres 2019), we will investigate approaches that let the
users specify the controls they want to shape the sounds.
This would be an effortless way for novice sound design-
ers to tune their drum sounds and create drum kits on pur-
pose, rather than relying on existing ones. Also, to merge
the computation server into the plugin is a required feature
for the model to be even more accessible.
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Singh, A.; and Wasserman, L. 2015. On the high dimen-
sional power of a linear-time two sample test under mean-
shift alternatives. In Artificial Intelligence and Statistics,
772–780.

[Sohn, Lee, and Yan 2015] Sohn, K.; Lee, H.; and Yan, X.
2015. Learning structured output representation using deep
conditional generative models. In Advances in Neural Infor-
mation Processing Systems, 3483–3491.

[Tolstikhin et al. 2017] Tolstikhin, I.; Bousquet, O.; Gelly,
S.; and Schoelkopf, B. 2017. Wasserstein auto-encoders.
arXiv preprint arXiv:1711.01558.


	Introduction
	Our proposal

	Related work
	Generative models on audio waveforms
	Generative models on spectral representations
	Spectrogram inversion

	Proposed model
	Preliminaries on variational autoencoders
	The Conditional WAE
	MCNN inversion

	Experiments
	Dataset
	Experimental setup
	Reconstruction
	Sampling the latent space

	Creative Applications
	Interface
	Generation Process
	Impact on creativity and music production

	Conclusion and Future Work

