dataset module
- class dataset.Audio_Dataset(train_transformation=None, test_transformation=None)[source]
Bases:
object
Avalanche audio datasets wrapper.
- MLCommons(root='../dataset/', sub_folder='subset2', subset='training', transforms=None)[source]
MLCommons dataset wrapper function for avalanche lib.
- Parameters:
root (str, optional) – dataset root location. Defaults to ‘../dataset/’.
sub_folder (str, optional) – dataset subset. Defaults to “subset2”.
subset (str, optional) – one of ‘training’, ‘validation’, ‘testing’. Defaults to “training”.
transforms (_type_, optional) – transformations applied to the data. Defaults to None.
- Returns:
Avalanche’s classification dataset
- Return type:
ClassificationDataset
- SpeechCommands(root=PosixPath('/home/joe/.avalanche/data/speechcommands'), url='speech_commands_v0.02', download=True, subset=None, transforms=None, pre_process=True, output_shape=[])[source]
SpeechCommands dataset wrapper function for avalanche lib.
- Parameters:
root (str, optional) – dataset root location. Defaults to default_dataset_location(“speechcommands”).
url (str, optional) – version name of the dataset. Defaults to “speech_commands_v0.02”.
download (bool, optional) – automatically download the dataset, if not present. Defaults to True.
subset (str, optional) – one of ‘training’, ‘validation’, ‘testing’. Defaults to None.
transforms (torch.nn.Module, optional) – transformations applied to the data. Defaults to None.
pre_process (bool, optional) – Enable prior preprocessing and saving of the dataset. Defaults to True.
output_shape (list) – Output shape of a transformed element.
- Raises:
ValueError – If an unkown subset is chosen
- Returns:
Avalanche’s classification dataset
- Return type:
ClassificationDataset
- class dataset.CachedAudio(subset, train_cache_path='../dataset_cache/', test_cache_path='../dataset_cache/')[source]
Bases:
Dataset
Wrapper for cached hdf5 audio datasets.
- class dataset.MLcommonsData(root, sub_folder, subset, folder_in_archive='MLCommons')[source]
Bases:
object
Wrapper for a subset of the MlCommons Multilingual Spoken Words dataset
- class dataset.SpeechCommandsData(root, url, download, subset)[source]
Bases:
SPEECHCOMMANDS
Wrapper for torchaudio’s speechcommand dataset.
- dataset.preprocess_and_save_dataset(dataset, save_path: str, transformation, output_shape=[])[source]
Function for preprocessing and saving datasets.
Important
This function only works for the SpeechCommands dataset, or for dataset that have those specific entries : wave, label, rate, speaker_id, utterance_number
- Parameters:
dataset (torch.utils.data.Dataset) – The dataset to be processed
save_path (str) – Save path for the preprocessed dataset
transformation (torch.nn.Module) – The transformations that will be applied to the data
output_shape (list) – Output shape of an element of the transformation. Defaults to [].
- Raises:
AttributeError – If given output shape is not a list or is an empty list